Winter 2025 - Chemistry 3840 Assignment #1

- 1. How does a 3-centered, 2-electron bond differ from a 2-centered, 2-electron bond? Describe fully using figures and examples. (14 points)
- 2. Do you expect $1,2-C_2B_{10}H_{12}$ to have the same cage structure as $[B_{12}H_{12}]^{2-2}$? Why or why not? Explain fully. (16 points)
- 3. a) When H_2 is added to the following combination

a reaction takes place immediately, but when H_2 is added to a mixture of PMe₃ and BMe₃ nothing happens. Why not? (12 points)

b) Draw the product(s) for the reaction of H_2 with $B(C_6F_5)_3$ and lutedine. (12 points)

4. a) Suggest a likely structure for B_5H_9 that is consistent with Wade's rules. Show your work and explain your reasoning. (12 points)

b) Classify B₅H₉ as *nido*, *closo* or *arachno*. (6 points)

- 5. For the following structures give the oxidation state of each metal. Show your work. (16 points)
 - i) [RhCl(PPh₃)₃]
 - ii) $[Pt(H)(I)(CH_3)_2(PEt_3)_2]$
 - iii) $[Ru(SiCl_3)_2(CO)_3(PPh_3)]$
 - iv) [Sc(CH₂SiMe₂Ph)₃(THF)₂]

Bonus (and excellent practice for the midterm exam):

For the structures in question 5:

- a) Give the d-electronic configuration of each metal (2 points)
- b) Provide the electron count at each metal (show your work) (2 points)